R

Small C++
C vs. C++ code size on 8-bit AVR

Detlef Vollmann

vollmann engineering gmbh, Luzern, Switzerland

LUGS, Zurich, January 2014



Introduction
Hardware
Design
C++

Code

Overview



Hardware Patterns

8bit Coprocessor
Realtime Coprocessor
Peripheral Coprocessor
Hardware Watchdog




8bit Coprocessor

Name: " 8-bit Coprocessor”

Problem: Some logic is hard to do in hardware
Forces:

some things are hard in hardware

but don’t fit into main CPU
8-bit processors a cheap

as components and in manufacturing
Solution:
Use separate 8-bit coprocessors




Realtime Coprocessor

Name: " Realtime Coprocessor”
Problem:
Favoured OS clashes with realtime requirements

Forces:
Some protocols or hardware have hard realtime requirements
Selected well-known widely-used OS cannot provide the
required realtime guarantees

Solution: Add a separate, dedicated realtime controller

Consequences:

additional hardware costs
devide and conquer




Peripheral Coprocessor

Name: " Peripheral Coprocessor”
variation of " Realtime Coprocessor”
Problem:
Special protocol with hard latency or throuput requirements
Forces:
similar as for " Realtime Coprocessor”
implementation in main processor would be problematic
same protocol is used in different systems
doesn't exist as COTS
Solution:
implement it in software on a separate processor



Hardware Watchdog

Name: "Intelligent External Watchdog”

Problem: Watchdog timer devices are inflexible
Forces:
external watchdog shall reset the main processor after some
time of missing heartbeat
but boot time is longer
and not during firmware update
after specific number of unsuccessful attempts some alarm
shall go off
Solution:
use separate " 8-bit Controller” with watchdog software



AVR

AVR is a popular 8-bit microcontroller architecture by Atmel

tinyAVR start at 512B flash and no RAM (but 32
registers)

megaAVR start at 4K flash and 512B RAM
AVR is used on the Arduino boards




Introduction
Hardware
Design
C++

Code

Overview



Flexible Design

" Design for Change”

Keep the design flexibel
extendable:
It's easy to add new functionality
adaptable:
It's easy to change existing functionality
reusable:

Reuse of parts in other systems
Reuse parts from other systems




Object Benefits

Reliability
It runs, and runs, and runs ...
smaller units
cleaner code
more robust code
Reusability
Special versions, different hardware and similar systems
classes as re-usable unit




Reliability

Smaller Units

Small is beautiful.
Cleaner Code

Ease the code review.

More Robust Code

Let the compiler do the work!




Smaller Units

Classes are protected units.
Nobody can change (or access) your data without your control.
Users of your class are constrained to the published interface.
Classes have explicit interfaces.

You can change the implementation.
You can substitute a class by your own version.

Classes are self-contained.

You can re-use them elsewhere.
Again: you can substitute them.

Classes are plugged into frameworks.
Re-use complete architectures.




Cleaner Code

Small units
In smaller, self-contained units, mistakes are much easier to
spot.

Clear responsibilities

From the published interface, it's clear what you have to do —
and what's an SEP.

Clear delegation

If something is not your problem, it's clear who else is
responsible for that.




More Robust Code

Automatic initialization

Nobody can forget to make a clean start — the compiler cares
for you.

Automatic cleanup

Never again forget to free your locks or your memory — again
the compiler (together with useful library classes) cares for you.

Protected separations
The compiler enforces your boundaries.




Reusability

Classes are easier to re-use than functions (not easy!)

Self containment (enforce this!)
Clear responsibilities

Plug-in components into framework.




Reusability

Reusability for embedded systems is often much easier (and
more important) than for desktop systems
Special versions
A customer wants some of the functionality a littlebit different.
Different hardware

For embedded systems, porting is often the daily work:
different components to drive
new hardware line
new microcontrollers
Similar systems

If you write the software for one microwave, chances are good
that you have to write one for a different model.




Embedded Design

Constraints

Memory, performance, real-time
Well known environment

You can plan in advance
System programming

Low-level

Resource management
Multi-tasking

possibly multi-processing




Embedded Objects

Object-Oriented Programming often uses a lot of objects
short-lived
heap-based (at least partly)
dynamic memory allocation
Dynamic memory allocation is often a problem in
embedded systems
non-deterministic runtime
may fail




Embedded Objects

In embedded systems, OO must be used carefully

mechanisms depending on architectural level
special "libraries” for specific needs
always think about consequences

Golden optimization rule (" Don't optimize now") only
partially true

Don't use OO for OQ's sake
Use dynamic memory allocation carefully



Summary Benefits

Though the OO (and C++) mechanisms sometimes cost
you a bit, the benefits nearly always outweigh the costs:

You create your systems faster (through less debugging and
more re-use).

You create more reliable systems (due to cleaner code).
Your systems are more flexible and therefore the time to
market for variations is much shorter.




Overview

Introduction
Hardware
Design

C++
Code




C++ History

C++ was designed from the beginning as a system
programming language.

C+-+ was designed to solve a problem — a complex, low
(system) level one.

Design goals:
Tool to avoid programming mistakes as much as possible
at compile time
Tool to support design — not only implementation
C performance
High portability
Low level
Zero-overhead rule (“Don’t pav for what vou don't use.”)



C++ Language Costs

"TASATAFL"

Generally, C++ is as fast as hand-coded assembler
but no rule without exception
Abstraction mechanisms sometimes cost
program space
runtime data space
runtime performance
compile-time performance

Non-abstraction solutions cost as well



Overview

Introduction
Hardware
Design
C++

Code




AVR C++

GCC has an AVR backend
No tinyAVR
RAM sizes starting from 128B (old devices)
So GCC C++ also works
No exceptions
No placement new
No virtual destructors
No Standard C++ library
AVR Libc library (http://www.nongnu.org/avr-libc/)

Provides fairly complete C library
Even <stdio.h> and malloc()

Arduino provides a C++ library that's not used here.




Code

“Hello, World!" embedded:
blinking LEDs




Questions

PPRP2027022272270272272270270277277°77°77°277




