
Small C++

C vs. C++ code size on 8-bit AVR

Detlef Vollmann

vollmann engineering gmbh, Luzern, Switzerland

LUGS, Zurich, January 2014



Overview

Introduction

◮ Hardware
◮ Design

◮ C++

Code



Hardware Patterns

◮ 8bit Coprocessor

◮ Realtime Coprocessor

◮ Peripheral Coprocessor

◮ Hardware Watchdog



8bit Coprocessor

◮ Name: ”8-bit Coprocessor”

◮ Problem: Some logic is hard to do in hardware
◮ Forces:

◮ some things are hard in hardware
◮ but don’t fit into main CPU
◮ 8-bit processors a cheap

◮ as components and in manufacturing

◮ Solution:
◮ Use separate 8-bit coprocessors



Realtime Coprocessor

◮ Name: ”Realtime Coprocessor”
◮ Problem:

◮ Favoured OS clashes with realtime requirements

◮ Forces:
◮ Some protocols or hardware have hard realtime requirements
◮ Selected well-known widely-used OS cannot provide the

required realtime guarantees

◮ Solution: Add a separate, dedicated realtime controller
◮ Consequences:

◮ additional hardware costs
◮ devide and conquer



Peripheral Coprocessor

◮ Name: ”Peripheral Coprocessor”
◮ variation of ”Realtime Coprocessor”

◮ Problem:
◮ Special protocol with hard latency or throuput requirements

◮ Forces:
◮ similar as for ”Realtime Coprocessor”
◮ implementation in main processor would be problematic
◮ same protocol is used in different systems
◮ doesn’t exist as COTS

◮ Solution:
◮ implement it in software on a separate processor



Hardware Watchdog

◮ Name: ”Intelligent External Watchdog”

◮ Problem: Watchdog timer devices are inflexible
◮ Forces:

◮ external watchdog shall reset the main processor after some
time of missing heartbeat

◮ but boot time is longer
◮ and not during firmware update
◮ after specific number of unsuccessful attempts some alarm

shall go off

◮ Solution:
◮ use separate ”8-bit Controller” with watchdog software



AVR

AVR is a popular 8-bit microcontroller architecture by Atmel

◮ tinyAVR start at 512B flash and no RAM (but 32
registers)

◮ megaAVR start at 4K flash and 512B RAM

AVR is used on the Arduino boards



Overview

Introduction

◮ Hardware

◮ Design
◮ C++

Code



Flexible Design

”Design for Change”

Keep the design flexibel
◮ extendable:

◮ It’s easy to add new functionality

◮ adaptable:
◮ It’s easy to change existing functionality

◮ reusable:
◮ Reuse of parts in other systems
◮ Reuse parts from other systems



Object Benefits

◮ Reliability
◮ It runs, and runs, and runs ...
◮ smaller units
◮ cleaner code
◮ more robust code

◮ Reusability
◮ Special versions, different hardware and similar systems
◮ classes as re-usable unit



Reliability

◮ Smaller Units
◮ Small is beautiful.

◮ Cleaner Code
◮ Ease the code review.

◮ More Robust Code
◮ Let the compiler do the work!



Smaller Units

◮ Classes are protected units.
◮ Nobody can change (or access) your data without your control.
◮ Users of your class are constrained to the published interface.

◮ Classes have explicit interfaces.
◮ You can change the implementation.
◮ You can substitute a class by your own version.

◮ Classes are self-contained.
◮ You can re-use them elsewhere.
◮ Again: you can substitute them.

◮ Classes are plugged into frameworks.
◮ Re-use complete architectures.



Cleaner Code

◮ Small units
◮ In smaller, self-contained units, mistakes are much easier to

spot.

◮ Clear responsibilities
◮ From the published interface, it’s clear what you have to do –

and what’s an SEP.

◮ Clear delegation
◮ If something is not your problem, it’s clear who else is

responsible for that.



More Robust Code

◮ Automatic initialization
◮ Nobody can forget to make a clean start – the compiler cares

for you.

◮ Automatic cleanup
◮ Never again forget to free your locks or your memory – again

the compiler (together with useful library classes) cares for you.

◮ Protected separations
◮ The compiler enforces your boundaries.



Reusability

◮ Classes are easier to re-use than functions (not easy!)
◮ Self containment (enforce this!)
◮ Clear responsibilities

◮ Plug-in components into framework.



Reusability

Reusability for embedded systems is often much easier (and
more important) than for desktop systems

◮ Special versions
◮ A customer wants some of the functionality a littlebit different.

◮ Different hardware
◮ For embedded systems, porting is often the daily work:

◮ different components to drive
◮ new hardware line
◮ new microcontrollers

◮ Similar systems
◮ If you write the software for one microwave, chances are good

that you have to write one for a different model.



Embedded Design

◮ Constraints
◮ Memory, performance, real-time

◮ Well known environment
◮ You can plan in advance

◮ System programming
◮ Low-level
◮ Resource management
◮ Multi-tasking

◮ possibly multi-processing



Embedded Objects

◮ Object-Oriented Programming often uses a lot of objects
◮ short-lived
◮ heap-based (at least partly)
◮ dynamic memory allocation

◮ Dynamic memory allocation is often a problem in
embedded systems

◮ non-deterministic runtime
◮ may fail



Embedded Objects

◮ In embedded systems, OO must be used carefully
◮ mechanisms depending on architectural level
◮ special ”libraries” for specific needs
◮ always think about consequences

◮ Golden optimization rule (”Don’t optimize now”) only
partially true

◮ Don’t use OO for OO’s sake

◮ Use dynamic memory allocation carefully



Summary Benefits

◮ Though the OO (and C++) mechanisms sometimes cost
you a bit, the benefits nearly always outweigh the costs:

◮ You create your systems faster (through less debugging and
more re-use).

◮ You create more reliable systems (due to cleaner code).
◮ Your systems are more flexible and therefore the time to

market for variations is much shorter.



Overview

Introduction

◮ Hardware

◮ Design

◮ C++

Code



C++ History

C++ was designed from the beginning as a system
programming language.

C++ was designed to solve a problem – a complex, low
(system) level one.

Design goals:
◮ Tool to avoid programming mistakes as much as possible
at compile time

◮ Tool to support design – not only implementation
◮ C performance
◮ High portability
◮ Low level
◮ Zero-overhead rule (“Don’t pay for what you don’t use.”)



C++ Language Costs

◮ ”TASATAFL”
◮ Generally, C++ is as fast as hand-coded assembler

◮ but no rule without exception

◮ Abstraction mechanisms sometimes cost
◮ program space
◮ runtime data space
◮ runtime performance
◮ compile-time performance

◮ Non-abstraction solutions cost as well



Overview

Introduction

◮ Hardware

◮ Design

◮ C++

Code



AVR C++

◮ GCC has an AVR backend
◮ No tinyAVR
◮ RAM sizes starting from 128B (old devices)

◮ So GCC C++ also works
◮ No exceptions
◮ No placement new
◮ No virtual destructors
◮ No Standard C++ library

◮ AVR Libc library (http://www.nongnu.org/avr-libc/)
◮ Provides fairly complete C library
◮ Even <stdio.h> and malloc()

◮ Arduino provides a C++ library that’s not used here.



Code

◮ “Hello, World!” embedded:
◮ blinking LEDs



Questions

◮ ???????????????????????????????????


